

Overview: Advanced Engine and Fuels R&D

Gurpreet Singh, Program Manager

Advanced Engine and Fuel Technologies Vehicle Technologies Office

Ken Howden, Siddiq Khan, Kevin Stork, Michael Weismiller

Why Focus on Internal Combustion Engines (ICE)?

- Despite the expected growth in BEV sales, the global as well as the U.S. light-duty fleet will be dominated by vehicles with ICE in the coming decades.
- Improving ICE efficiency is one of the most promising and cost-effective approaches to increasing the fuel economy of the U.S. vehicle fleet.
- Advanced fuel formulations that can incorporate non-petroleum-based blending agents could further enhance engine efficiency and energy security even in 2050 timeframe

Advanced Engine and Fuel Technologies R&D

Strategic Goal: Improve understanding of, and ability to manipulate, combustion and emission control processes while generating knowledge and insight necessary for industry to develop the *next generation engines and fuels* capable of improving the fuel economy of passenger and commercial vehicles.

Program Goals	Light Duty			Heavy Duty	
	2020	2025	2030	2020	2025
Engine Brake Thermal Efficiency		1	i	55%	57%
Fuel Economy Improvement*	20%	25%	35%**	30%	35%
Nox & PM Emissions	Tier3/ LEV III	Tier3/ Bin 30	Tier3/ Bin 30	EPA Standards	EPA Standards

^{*}Compared to: LD baseline is 2015 direct-injected boosted gasoline vehicle HD baseline is 2009 HD diesel engine

^{**}Includes improvement from Co-optimization of Fuels and Engines

Advanced Engine and Fuel Technologies [FY20 Budget: \$70M]

Combustion Research

Leveraging advances in HPC and ML/AI

Co-Optimization of Fuels and Engines

Fuel Effects on

Combustion

Cross-office

collaboration with

BETO

Alternative Fuel Engine R&D

Effective use of abundant domestic fuels

Emissions Control R&D

Critical materials issues (PGM)

High Efficiency Engine Technology

SuperTruck II, LD/MD and Off-road

Partnership to Advance Combustion Engines (PACE)

Michael Weismiller, TM

Leverage DOE investment in HPC/Al to provide knowledge and tools to US OEMs

Predictive simulation tools are needed to accelerate engine development

- Diagnose issues that are opaque to experiment
- Allows rapid iteration of design
- High-throughput simulations enable virtual calibration
- Shortened design cycle = technology on road faster

Co-Optima MD/HD Opportunities

Fuel-Engine Co-Optimization

- Fuel impacts on emissions (e.g., low-sooting fuels)
- Improved engine efficiency via full exploitation of fuel properties (e.g., higher octane allows higher compression ratio)
- New distillate fuel sources (e.g., biofuels) and combustion modes can help manage refinery system gasoline/diesel balance

system gasoline/diesel balance

Co-Optima oral presentations – Wednesday, June 3, 2020, A.M. & P.M.; Thursday, June 4, 2020, A.M.

more efficient engines = lower exhaust temps = catalyst challenges

PGM Price data from http://www.platinum.matthey.com/prices/price-charts May 15, 2020

Emissions Control Oral Presentations on June 03, 2020 from 10-am to 6-pm

Advanced Technologies for Heavy-Duty Vehicles - SuperTruck II

Ken Howden, TM

Goal: Demonstrate a 55% or greater engine brake thermal efficiency in real-world operation, greater than 100% improvement in freight efficiency (ton-mpg) relative to a 2009 baseline, and a payback period of less than 3 years to foster more rapid market adoption of new energy efficient technologies.

- The five SuperTruck II teams
 - Have completed their analysis, and developed and tested their subsystems.
 - Initiating the assembly of prototype Class-8 tractors and trailers.
 - Will conduct iterative testing and design optimizations to achieve engine and vehicle freight efficiency goals in 2021.

Oral Presentations on Thursday, June 4, 2020.

New Material and Engine Technologies for High Efficiency Powertrains

Ken Howden, TM

Combining new materials that reduce weight and achieve higher combustion temperatures and pressures with new high-efficiency engine combustion strategies

Low-Mass and High-Efficiency Engine for Medium-Duty Truck Applications – General Motors

• Develop a high performance gasoline engine equipped with advanced materials and combustion technologies capable of ≥10% fuel efficiency improvement and ≥15% engine weight reduction when compared to the baseline 2015 L96 VORTEC 6.0 Liter V8 engine.

Next Generation High Efficiency Boosted Engine Development – Ford Motor Company

Design, evaluate, build and test an engine that will achieve 23% fuel economy improvement and 15% weight reduction relative to a 2016MY 3.5 Liter V6 EcoBoost F-150 baseline.

Thank You

Gurpreet Singh

gurpreet.singh@ee.doe.gov

Web site:

Vehicle Technologies Office www.vehicles.energy.gov

http://energy.gov/eere/vehicles/vehicle-technologies-office